Those who know me will definitely vouch for me on this, I am extremely fond of Tetris Attack. It throws people off all the time, but this is not Tetris as most know it. For those who don't know what Tetris Attack is, I highly recommend checking it out. It's a game that came out with the Super Nintendo, which I know is old, but it's still probably my favorite game today. Here is a video showing some aspects of the game on YouTube by MarkoManX.
The beauty of this game is that it's undeniably simple when you start out. You get matches of 3 in vertical or horizontal lines to clear the blocks. In this game, diagonals do not matter. If you get more than 3, that is a combo. If you get a match, and those blocks fall and make another match, this is called a chain. Chains naturally give more rewards, particularly for longer chains. As each chain can make another match, and another, and another ... up until the skill of the player interferes or there is no possibility within the constraints of the current block set up.
So, for a long time I've wanted to build my own little clone of the game. Nothing big, but something that shows I can sit down and figure out the mechanics in a discrete way. So today, as it relates to computer science, I'm going to talk about how I figured out how to make the matching algorithm work in my prototype. Trees are not far off, as Trees can be made from the subset of a graph and is in fact a common thing to do. Particularly for minimum spanning trees which would solve the traveling businessman problem. For those that don't know the problem, it's essentially about a businessman that wants to travel to a set of cities S using the minimum possible cost or distance using the available routes between them. I do not use graphs explicitly, but thinking of the grid as a graph can help.
First, allow me to explain some of the components via visuals.
I grabbed the block images from a game called tetattds, which is another remake of the game for the Nintendo DS. I downloaded the source and looked around to give me a general idea of how they thought. Now, I promise, whatever I came up with in my code is on my own merit, as I'm pretty certain whatever is in the source for tetattds is better than mine because I really am not sure what they did in this regard. I'm just here to explain the basic, high level approach one can take, and am not advocating it as the best or only way.
Anyway, take a second and given when you know already (3 or more blacks makes a match, anything more than 4 makes a combo, etc), what match do you think the above image will make for the yellow blocks?
..
..
This will make a 7 (seven) combo. Meaning, 7 blocks are matched. Some of you might be thinking, "But wait! There are eight yellow blocks touching!" and you would be correct. The issue is that the top left most yellow block is not in any adjacent combination of 3 or more in a row either vertically or horizontally.
So how do we account for such challenges?
The first thing to realize is that the field of play is a n x 6 grid. Such as:
[1,1][1,2]...[1,6]
[2,1][2,2]...[2,6]
...
[n,1][n,2]...[n,6]
That is, it can have infinitely many rows, but only 6 columns. There can be empty blocks as well as the normal types. We don't always want to check for a match because then it would be a waste of resources, so what we first need to think about are the conditions in which a pop might be invoked. These are a cursor swap, a falling block, or a row of blocks being raised from underneath. In each of these cases, a "NeedPop" flag is set on the individual block, and during the game loop it sweeps the field and looks for that state. If it finds it, it commences the algorithm to look for matches. This idea was brought forth by John, because originally I just called the algorithm when any of the above mentioned events occur, but this gives a degree of freedom while making some things simpler, and other things more complicated which I may get to in a future post.
Now for the interesting bit. The grid, in its form to the game, can be thought of a graph. Each block can have four connections (also called edges) to the block above, below, to the left of, and to the right of a block. The basic premise of the algorithm to detect a match is a breadth first search algorithm. For those that don't know, this is basically a mechanism for visiting the vertices in a graph (or tree) by visiting each vertex and its children before moving onto the childrens children. This is in contrast to a depth first search which will search the remaining depth of the first searched child of a node (recall what I mentioned about trees in my last post) to its height, before moving back up the tree to check other children of a node. In fact, a tree structure is represented from both the breadth first search and depth first search traversal algorithms.
So lets do a quick run through. We'll start with the top left block, which I already mentioned did not make it in the final match, and I'll explain why in terms of the algorithm. I'll mark a node as visited by showing a transparent green box over the block.
First thing is first, we need a Queue to keep track of what blocks we're processing. So first in the Queue is the top left block. We'll mark this block as visited. Since we're concerned with the vertically and horizontally adjacent blocks, we search those and add them to the Queue if they match with the block that started with the search. So what we end up with is the below, with green marking a match and red marking a non match.
So note that we do get a same tile to the right, but it stops with the start and since the number is < 3, we don't add the matched tile to the queue, and because there's nothing below (And empty/invalid tiles to the left and above), we stop processing and move on to the next one adjacent to it (To form the sweep, but the algorithm will work from any position, and i'll demonstrate that after).
I'll take the next one step by step.
First, we take the block at row 1 (from the top), and column 1.
Then we start processing that Queue. We'll start with verticals as that's what I started with in my code. So we look down, and find that we have a matching tile, and we check below that, and we have a third matching tile so we add to the set that maintains all matching tiles, and at this point we only have the three. The algorithm will check the tile below that as well, and find that we have no matching tile (Excuse the cursor image in there, I kept it in to show that's what the cursor looked like, but there's a blue and green block with the cursor). After checking all verticals, we get the below.
So currently in our Queue we have the positions {3, 1}, and {2, 3}, as we found a matching tile last time so we want to check to see if it leads to anything. We'll get to it though, and this is what makes it resemble a breadth first search. So we're currently processing {3, 1}, and we check only the horizontal blocks, left first than right. We find one on each side giving a match of 3, so we add the two new blocks to the match set while ignoring the one that is already part of the match set. We end up with the below image, and we add the left block then the right block to the Queue, leaving us with {2, 3}, {3, 0}, and {3, 3}.
Now we process the {2, 3} yellow block. Note that this time, we also make a redundant check here on the {2, 3} and {3, 3} block. We still need to consider them as part of a match, but the difference is we don't count them twice if they are part of the match set, and we don't add it at the end of the queue for processing because it's already been visited. This is how we can prove that the algorithm is correct in one sense. That is, we can prove that it does not miss any possible blocks that may match, and it does not count any block as part of a match more than once. Also of note that {2, 3} was found via a horizontal search from {2, 2}. This means that we only need to check vertically, because the horizontal blocks here have already been checked, so we don't even need to check if they've been visited. This time, {2, 3} is part of a match along with the already present {3, 3} and now {3, 4}. These blocks have been visited and checked as shown by the image below, and we do add {4, 3} to the queue. So after this round, we have {3, 0}, {3, 3}, and {4, 3}.
At this point, we know intuitively that we've found everything and the match set contains 7 blocks, but the algorithm still has three nodes to process: {3, 0}, {3, 3}, and {4, 3}. For {3, 0}, we again only check verticals, because it was found via a horizontal search. We make another redundant check above, and one below while processing {3, 0} and we find no matches. We make the redundant check because at this point we know that we can still find something, as shown before, but in this case we sadly did not. We could improve this with a dynamic programming approach to remove these redundancies, but it would require more memory to store the matches for each checked block, and the set is never that large. So the extra check hardly makes a difference for such a small set to a computer.
I think you should get the idea by now. Ultimately we end up with the below image because {3, 0} checks the block below it, and {4, 3} checks the block to the right of it due to them being found by a horizontal and vertical search respectively.
And, that is why we get the match of 7!
We could also start the algorithm from, say, {3, 2}, instead of {1, 1}. What do you think we'd get for the first path and the results of the Queue, if we check verticals (Top, then bottom) than horizontals (Left, then right)? See the image below:
Queue: {2, 2}, {1, 2}, {3, 1}, {3, 3}
If you're feeling adventurous, try to complete the rest on your own and let me know! That is basically how the matching algorithm works. It could technically start there. It wouldn't be likely with this particular block setup but if a swap was done there it would set the state in those blocks and then start where the left block of the cursor is..
Note that this match could happen either by, as mentioned above, a cursor swap or a falling block. For example, if we pull the green block at {3,5}, let it fall to the bottom of column 4, the two red blocks would fall to make a match with the red. This is not a chain, however, as a match has to happen and then another match must occur.
I'm sure there are better ways, but the objective was to think of one on my own from a high level perspective, and though it may not be the most efficient way, I'm glad to say that it works in even the odd cases like the one demonstrated above! It's easy to find matches of 3, but when you have this weird block of 7, it was a challenge. Taking the concept of breadth first search from graph theory has helped me this time. As was my point with the discussion of binary trees, a graph is a data structure that has numerous applications. This search algorithm is just one way to traverse a "graph" like structure. You can create trees out of graphs by using traversal algorithms. These connections are key, particularly in game programming!
Computer Science, and by extension Game Development, is simple to understand, but difficult to master much like Tetris Attack. I hope this article was enjoyable! I certainly enjoyed writing it. Until next time!
No comments:
Post a Comment